Bi-parametric convex quadratic optimization

نویسندگان

  • Alireza Ghaffari Hadigheh
  • Oleksandr Romanko
  • Tamás Terlaky
چکیده

In this paper we consider the Convex Quadratic Optimization problem with simultaneous perturbation in the right-hand-side of the constraints and the linear term of the objective function with different parameters. The regions with invariant optimal partitions are investigated as well as the behavior of the optimal value function on the regions. We show that identifying these regions can be done in polynomial time in the output size. An algorithm for identifying all invariancy regions is presented. Some implementation details, as well as a numerical example are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex parametric piecewise quadratic optimization: Theory, Algorithms and Control Applications

In this paper we study the problem of parametric minimization of convex piecewise quadratic functions. Our study provides a unifying framework for convex parametric quadratic and linear programs. Furthermore, it extends parametric programming algorithms to problems with piecewise quadratic cost functions, paving the way for new applications of parametric programming in dynamic programming and o...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems

We use the merit function technique to formulate a linearly constrained bilevel convex quadratic problem as a convex program with an additional convex-d.c. constraint. To solve the latter problem we approximate it by convex programs with an additional convex-concave constraint using an adaptive simplicial subdivision. This approximation leads to a branch-and-bound algorithm for finding a global...

متن کامل

A new quadratic deviation of fuzzy random variable and its application to portfolio optimization

The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010